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Introduction

The CORBA-based Simulator was a Laboratory Directed Research and Development
(LDRD) project that applied simulation techniques to explore critical questions about
distributed control architecture. The simulator project used a three-prong approach
comprised of a study of object-oriented distribution tools, computer network modeling,
and simulation of key control system scenarios. This summary report highlights the
findings of the team and provides the architectural context of the study. For more
information, the reader is referred to detailed project reports listed in the references.

For the last several years LLNL has been developing the Integrated Computer Control
System (ICCS), which is an abstract object-oriented software framework for constructing
distributed systems. The framework is capable of implementing large event-driven
control systems for mission-critical facilities such as the National Ignition Facility (NIF)
[1] [Figure 1]. Tools developed in this project were applied to the NIF example
architecture in order to gain experience with a complex system and derive immediate
benefits from this LDRD.

The ICCS integrates data acquisition and control hardware with a supervisory system,
and reduces the amount of new coding and testing necessary by providing prebuilt
components that can be reused and extended to accommodate specific additional
requirements. The framework integrates control point hardware with a supervisory
system by providing the services needed for distributed control such as database
persistence, system start-up and configuration, graphical user interface, status monitoring,
event logging, scripting language, alert management, and access control. The design is
interoperable among computers of different kinds and provides plug-in software
connections by leveraging a common object request brokering architecture (CORBA) to
transparently distribute software objects across the network of computers.

Figure 1. Computer rendering of the NIF control room.

Because object broker distribution applied to control systems is relatively new and its
inherent performance is roughly threefold less than traditional point-to-point
communications, CORBA presented a certain risk to designers. This LDRD thus
evaluated CORBA to determine its performance and scaling properties and to optimize its
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use within the ICCS. Both UNIX (Sun Solaris) and real-time (Wind River VxWorks)
operating systems were studied. Performance of ICCS deployment was estimated by
measuring software prototypes on a distributed computer testbed and then scaled to the
desired operating regime by discrete-event simulation techniques. A study of CORBA
protocols continues to guide software optimization as NIF software is being implemented
and tested.

The message-driven nature of distributed control places heavy demands on computers
and network switches, so a complementary simulation of network architectures for
several protocols was undertaken using a network modeling tool (OPNET Modeler).

Additional workflow simulations were developed in a general simulation tool
(Simprocess) to assess system behavior of high-stress operational scenarios.

Understanding the risks and decisions that trade-off in designing the framework and
supporting hardware architecture was enhanced by a concurrent program of simulation
and prototype validation of the ICCS applied to the NIF example.

Integrated Computer Control System Architecture

The ICCS is a layered architecture consisting of front-end processors (FEP) coordinated
by a supervisory system [Figure 2]. Supervisory controls, which are hosted on UNIX
workstations, provide centralized operator controls and status, data archiving, and
integration services. FEP units are typically constructed from VME-bus or PCI-bus crates
of interfaces and embedded controllers that attach to control points (e.g. stepping motors,
photodiode sensors, and pulse power supplies). FEP software provides the distributed
services needed by the supervisory system to operate the control points. The software is
distributed among the computers and provides plug-in software extensibility for attaching
control points and other software services by using the CORBA protocol. Functions
requiring hard real-time implementation do not communicate over the network and are
allocated to software resident within the FEPs or embedded controllers. Precise triggering
of fast instrumentation is handled by an independent timing system, which relieves the
software and network from supporting hard real-time communications.
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Figure 2. Simplified Integrated Computer Control System architecture.

The operator console provides the human interface in the form of operator displays, data
retrieval and processing, and coordination of control functions. Supervisory software is
partitioned into several cohesive subsystems, each of which controls a primary subsystem
(some NIF examples are alignment controls, laser diagnostics, and power conditioning).
A dual server configuration provides enhanced performance with the added benefit of
greater availability in the event one server fails. Several databases are incorporated to
manage both experimental data and data used during operations and maintenance. The
subsystems are integrated to coordinate operation of distributed equipment. Some of the

performance requirements that drove the simulation study are listed in Table 1.

Requirement

Performance

Computer system start-up

< 30 minutes

Respond to broad-view status updates

< 10 seconds

Respond to alerts

< 1 second

Perform automatic alignment

< 20 minutes

Transfer and display digital motion video

10 frames per second

Human-in-the-loop controls response

<100 ms

Table 1. Typical ICCS performance requirements.

Front-end processors implement the distributed portion of the ICCS by interfacing to
equipment control points. The FEP software performs sequencing, data acquisition and
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reduction, instrumentation control, and input/output operations. The software framework
includes a standard way for FEP units to be integrated into the supervisory system by
providing the common distribution mechanism (i.e. CORBA) coupled with software
patterns for hardware configuration, command, and status monitoring.

To reduce complexity and ease implementation, large hierarchical control systems are
often partitioned into a number of vertical slices each of which contain a related subset of
supervisory software and associated front-end processors (FEP). Coupling is reduced
because little or no message traffic needs to bridge between slices. The slices are
constructed by extending the reusable framework components to meet additional
functional requirements imposed by its unique equipment. Each slice may also have
different performance and physical distribution requirements.

In the NIF example, which is fairly complex, there are eight supervisory software
applications that conduct laser shots in collaboration with 19 kinds of front-end processor
as shown in Figure 4. Seven of the subsystems are shown as vertical slices comprised of a
supervisor and associated FEP that partition the ICCS into smaller systems that are easier
to operate and maintain. The eighth supervisor is the shot director, which is responsible
for conducting the shot plan, distributing the countdown clock, and coordinating the other
seven.

Shot Director

Shot Integration

Optical
Pulse
Generation

Laser

Target Power Shot
Diagnostics Pockels Cell

Diagnostics Conditioning Services

Supervisory Subsystems

Master Switch

Wavefront Laser Energy Oscillator Pulser

Automatic Preamplifier Target Power Plasma Industrial
Alignment Laser Power Module Diagnostics Conditioning Pulser Controls

Har e
Image
Processor

Precision Beam Pulse
Diagnostics Transport Diagnostics

Application FEPs

Alignment "Eu". - -
Controls Resolution Digital Video Timing
ccb
Service S

Figure 3. Software responsibilities are partitioned to form loosely coupled vertical
slices as shown for the NIF example control system.

ICCS Software Framework

The ICCS supervisory software framework [2] is a collection of collaborating
abstractions that are used to construct the application software. The framework promotes
code reuse by providing standard coding templates that interconnect via CORBA.
Components in the ICCS framework are deployed onto the file servers, workstations, and
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FEPs, as shown generically in Figure 4. Engineers specialize the framework (through
object-oriented inheritance) for each application to handle different kinds of control
points, controllers, user interfaces, and unique functionality. The framework concept
enables the cost-effective software construction and provides the basis for long-term
maintainability and upgrades by virtue of object technology.

Dual Servers Workstation
olaris olans

Integration Services Sample Application

- ntiguration Server -loca PRS0
i Cecantrglls [slzems e - Application Object Factories

Y3 29 Oracle - Application Function Objects
- Message Log Server - Application GUI Model User Interface
- Alert Manager _ T+ DMBS - Alert Subscri ber | 1 -Status Displays
- Centr.al R§ewa(|on N!anager . Log Subscriber - Contrd Panels
giachineltiistorviArchiven - Local Reservation Manager
- Shat Data Archiver - Application only -

- Shat Setup Server

- Shot Life Cycle Subscriber
-Local Countdown

Workstation

—rsu'rm—l
|_ L etwork P Shot Director
“TSample Application) User Interface
-pus - + |- StatusDisptays—
- Central Countdown - Contrd Panels
[:ans—'__rvm - Shat Life Cycle Publisher
mple Front End Processor
~tocat-Systent
- Device/Controller Object Factories
- Device Objects
- Commands Emulated
- Status Device
-Messages </

-Alerts

- History
- Controller Objects Real
- Local Reservation Manager

Device
- Status Monitor
- FEP Function Objects

Figure 4. The ICCS reference architecture illustrates deployment of software
objects into a server, application workstation and front-end processor on the
network.

The following discussion introduces the framework components that form the basis of the
ICCS software.

Configuration - a hierarchical organization for the static data that define the hardware
control points. Configuration provides a taxonomic system that is used as the key by
which clients locate devices (and other software services) brokered by CORBA. During
normal operation, configuration provides to clients the CORBA references to all
distributed objects. An important responsibility of configuration is the initialization of
front-end processors during start-up. Configuration data are stored in the database and
describe how and where the control hardware is installed in the system. Sensor
calibration data, operating setpoints, and device channels assigned to interface boards are
examples of static data managed by configuration. During ICCS start-up, this framework
collaborates with an “object factory” located in the FEP to create, initialize, and report
the CORBA reference for each control/monitor object.

Status Monitor - provides generalized services for broad-view operator display of device
status information using the publisher-subscriber model of event notification. The status
monitor operates within the FEP observing devices and notifying other parts of the
system when the status changes by a significant amount. Network messages are only
generated when changes of interest occur.

6 UCRL-ID-133243



Sequence Control Language - used to create custom scripting languages for the NIF
applications. The service automates sequences of commands executed on the distributed
control points (or other software artifacts). Operators, rather than programmers, create
and maintain sequence scripts.

Graphical User Interface (GUI) — All human interaction with ICCS is via graphical
user interfaces displayed upon operator workstations. The GUI is implemented as a
framework in order to ensure consistency across the applications. Commercial GUI
development tools are used to construct the display graphics. This framework consists of
guidelines for look and feel as well as many common graphical elements. This
component is implemented at the edge of the architecture so that the GUI tool can be
replaced with minimal impact if necessary.

Message Log - provides event notification and archiving services to all subsystems or
clients within the ICCS. A central server collects incoming messages and associated
attributes from processes on the network, writes them to appropriate persistent stores, and
also forwards copies to interested observers such as GUI windows.

Alert System - any application encountering a situation that requires immediate attention
raises an alert, which then requires interaction with an operator for the control system to
proceed. The alert system records its transactions so that the data can be analyzed after
the fact.

Reservation - manages access to devices by giving one client exclusive rights to control
or otherwise alter a control/monitor point. The framework uses a lock-and-key model.
Reserved devices that are “locked” can only be manipulated if and when a client presents
the “key”.

System Manager - provides services essential for the integrated management of the
ICCS computer network. This component ensures necessary processes and computers are
operating and communicating properly. Services include orderly system start-up,
shutdown, and watchdog process monitoring.

Machine History - gathers information about operational performance for later analysis
in order to improve efficiency and reliability. Examples of such information are
component adjustments, abnormal conditions, operating service, periodic readings of
sensors, and reference images.

Generic FEP - pulls together the distributed aspects of the other frameworks (in
particular the system manager, configuration, status monitor, and reservation
frameworks) by adding unique classes for supporting device and controller interfacing.
These classes are responsible for hooking in CORBA distribution as well as
implementing the creation, initialization, and connection of device and I/O controller
objects. The generic FEP also defines a common hardware basis including the processor
architecture, interface board inventory, device drivers, and field-bus support. The FEP
application developer extends the base software classes to incorporate specific
functionality and control logic.

Data Archive - The ICCS is responsible for collecting the data from diagnostics, making
the data immediately available for “quick look™ analysis, and delivering the data to an
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archive. The data archive provides a server that works in collaboration with the system
manager framework to assure that requested data are delivered to a disk staging area.

CORBA simulation

Past architectural approaches to distributed controls have relied on the technique of
building large application programming interface libraries and point-to-point socket
communications to give client applications access to server functions implemented
throughout the computer network. This practice results in large numbers of
interconnections that quickly increases the system complexity and makes software
modification much more difficult. To address this problem in the ICCS, software objects
are distributed using CORBA.

CORBA is a standard developed by a consortium of major computer vendors to propel
the dominance of distributed objects on local area networks and the World Wide Web.
The best way to think of CORBA is as a universal “software bus”. CORBA provides a
standardized backplane into which software objects can “plug and play” to interoperate
with one another, even when made by different vendors. By design, CORBA objects
interact when implemented with different languages, operating systems, and networks.

At a greatly simplified level, the major parts of CORBA are shown in Figure 5. The
interface types and methods provided by the server objects and used by the clients are
defined by an industry standard Interface Definition Language (IDL). The IDL compiler
examines the interface specification and generates the necessary interface code and
templates into which user-specific code is added. The code in the client that makes use
of CORBA objects is written as if the server was locally available and directly callable.
Each computer on the network has an object request broker that determines the location
of remote objects and transparently handles all communication tasks.

Iraaimonal viienvserver

lien Interactions i
¢ .e t Server Objects
Application | _____________________.| (FEP)
(GUI)
Interface
Definition
Language (IDL)
IDL Compiler
Templates Templates

Object\ SOFTWARE BUS  /biect

Request Request
Broker (network) Broker

Figure 5. CORBA distribution effectively implements a software bus on the
network.
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Because CORBA handles the data format conversion necessary to interoperate with
diverse computer systems, it is a more heavyweight protocol than previously used for
control system distribution. Other researchers have measured object request brokers and
shown CORBA to perform about three times slower than point-to-point communication
schemes (e.g. sockets). For this reason, a significant testing capability [3] was established
to predict the operational performance of a multi-threaded CORBA designed to support
concurrent Ada programming (ORBexpress by Objective Interface Systems) under
various deployment schemes.

The server program executed on a Sun Enterprise 3000 (2x250MHz Ultra-I), and creates
5 worker tasks to process incoming messages. The client program ran on a Sun Ultra
Creator 3D (300 MHz Ultra-II), and used 40 tasks to make calls to the server. For each
length x=2" (where n=0 to n=16) 10,000 sequences of octets were sent to the server (250
per client task). The network utilized 100 Mbit/s Ethernet links. Clock time, CPU time
on the client machine, and CPU time on the server machine were recorded for each test.

Performance of CORBA varies according to several factors including client and server
processor speeds, network speed and loading, and the efficiency of the particular Ada
compiler run-time implementation. Results shown in Figure 6 gave the highest
performance out of three Ada compilers tested, obtained with the freely available GNAT
Ada translator. Figure 7 shows the same test operated on the same computer and network
hardware, but compiled with the Rational Apex Ada compiler. Figure 8 shows results for
a real-time (i.e., more deterministic behavior) CORBA implementation, where the server
computer was replaced with a PowerPC processor (300 MHz) in a VME crate. The test
server code in this case was compiled with the Rational Ada cross-compiler for the
VxWorks operating system.

% Client CPU
- | —=— % Server CPU

-1 | —=— % Network

' [—e— MsgRak (100Mbi)

Messages per Second
-
[6)]
o
o

— 8 0%

L1 50%

— 1 20%

=+ 1 00%

4+ 9 0%

4+ 7 0%

T 6 0%

1 a0%

3 3 0%

4+ 1 0%

% Utilization

b
= 0%

N v % o © bb‘ q/(b “ N’L Q %7 o
N % Q7 Q7 N A
N Vv Q >
L MNP
Message Size (Bytes)

Figure 6. CORBA performance tests of code compiled with GNAT Ada

Solaris/Sparc compiler.
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Figure 8. CORBA transaction performance measured for test code compiled with
Rational Apex Ada for VxWorks/PowerPC cross compiler.

In typical ICCS deployments, most control and monitoring transactions utilize on the
order of 100 byte messages. For this case, CORBA can transact at from 1300 to 2700
messages per second depending on the compiler and target processor tested. The reason
for the wide difference in CPU utilization is generally attributed to variations in compiler
and run-time library efficiencies and may well be addressed by ongoing improvements in
these relatively new products. For small message sizes, the CPU is the limiting resource,

10 UCRL-ID-133243



as the network is not heavily utilized (note that other computers need to use the
remaining network bandwidth). However, as messages become larger (e.g., during image
data transfers) the network does become the limiting factor.

For specific cases of ICCS deployment, subsystems are partitioned into loosely coupled
subsystems such that the message rate design point will average around 500 control
transactions per second. This approach provides a four- to fivefold capacity margin in the
supervisory computers to accommodate episodic bursts of message activity that are
occasionally expected in an event driven architecture.

Network communications simulation

Network modeling was performed to study and optimize different switch architectures,
transport technologies, and protocols. Figure 9 shows the general computer network
studied, which for the NIF example is comprised of 30 workstations, 300 FEPs, and
several hundred embedded controllers. Note that other implementations of ICCS could be
modeled by straightforward adaptations of this topology. The main control room contains
eight graphics consoles, each of which houses two workstations with dual displays. Each
software application is assigned to operate on one primary console, although the software
can be operated from alternate consoles including remote terminals located near the
equipment. File servers provide disk storage and archival databases for the entire system
as well as well as hosting centralized management and device naming services necessary
for coordinating facility operation.

8 Supervisory Consoles

- Two Dual-Monitor

Users & Workstafions per Console
External I ] 1

Databases

Core
100 Mb/s
Ethernet
Switch

Firewall

Jal

Servers

Remote
Workstations

13 Edge Automatic 24 Camera
Switches Alignment Video
Servers Digitizers
2,150 loops 500 CCD
Cameras
Front End 300 Front End Legend

Processors FEPs Processors

ATM OC-3 155 Mb/s (Fiber)
Ethernet 100 Mb/s
Ethernet 10 and 100 Mb/s

Figure 9. ICCS computer system and network architecture as deployed for NIF.

Key portions of the network were analyzed by applying the OPNET Modeler discrete-
event simulation package to simulate network operation [4]. Network analyzers (Network
Associates Distributed Sniffers) were used to collect actual performance data from the
testbed.
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The network design studied is both flexible and high-performance, utilizing Ethernet (10
and 100 Mbit/s) and Asynchronous Transfer Mode (ATM) technologies. ATM is utilized
on systems having time-sensitive video requirements. A core ATM switching system
provides connectivity to all ATM end-systems via 155 Mbit/s multi-mode fiber links.
Ethernet provides connectivity to all end-systems in the network, including the ones that
also have ATM connections. A core Ethernet switch provides 100 Mbit/s connectivity
and distributed Ethernet switches provide a mix of 10 Mbit/s and 100 Mbit/s
connectivity.

TCP/IP (transport control protocol / Internet protocol) is the protocol used for reliable
data transport between systems, either over Ethernet or ATM. TCP provides
retransmission of packets in the event that one is lost or received in error. In the NIF
example network, the only traffic not using TCP will be digitized video and software
network triggers. Video is transferred using the ATM adaptation layer 5 (AALS)
protocol. Network triggers are broadcast to many end-nodes simultaneously using
multicast protocols.

The ICCS network supports the transport of digitized motion video in addition to the
more typical control, status, and large data sets. The network transports video images of
640 x 480 x 8 bits/pixel at 10 frames per second from video FEPs (which digitize camera
images) to operator displays. Each uncompressed video stream requires about 25 Mbit/s
of network bandwidth. Operator workstations can display at least two video streams. As
many as 3 simultaneous video streams are supported from a single FEP, which requires
75 Mbit/s of bandwidth. Because the time to retransmit lost packets using TCP is
excessive the protocol is not suitable for use with video traffic. Also, video transmissions
need to be multicast to more than one operator console, which TCP does not support.

Digitized video is sent via the ATM application programming interface (API) using
ATM’s quality of service capability. The API provides an efficient method of moving
large, time-sensitive data streams, resulting in higher frames/sec rates with lower CPU
utilization than alternative approaches, which is an important consideration for streaming
video traffic. Performance testing of a prototype video distribution system indicate that
55% of the FEP CPU (300 MHz UltraSparc AXI) is used to broadcast 3 concurrent
streams while 10% of the operator workstation CPU (300 MHz UltraSparc 3D Creator) is
utilized for each playback stream.

The first problem studied with OPNET was to evaluate the latency of “trigger” signals
sent over the Ethernet and ATM switches. If the latency of the networks were low
enough, then separate dedicated “networks” would not be needed to support these
triggers. Simulations indicated that the latency would be much less than 1 millisecond,
even under the background load necessary to operate the distributed control system. The
largest contributor to trigger latency was not the network switching but rather trigger
packet processing in the source and destination processors.

In order to study operational scenarios, specific node models were developed in OPNET
Modeler for interesting subsystems in the network. This included 32-port ATM and 50-
port Ethernet switches, supervisory workstation, automatic alignment system, video FEP,
and alignment motor controller FEP. The supervisory workstation was particularly
challenging because the model needed to support concurrent clients using several
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transport protocols over both ATM and Ethernet. Note that since the network is fully
switched (i.e. every end-system has its own non-shared network link), traffic is isolated
within the switches to only the ports that are communicating. This allows various
subsystems to be independently modeled, which decreases simulation runtime to practical
levels.

The component models were used to simulate network operation during NIF’s alignment
phase, which is when the network carries the most traffic. Traffic levels were defined
between the client and server modules in the “workstation” nodes. Traffic statistics were
collected during simulation runs and used to evaluate throughputs, latencies, packet loss,
and link utilization at various points in the network. Special “filters” were created which
allowed viewing the statistics in alternative ways. For example, a filter was created to
generate windowed averages of link utilization.

A computer display of the top-level alignment network model is shown in Figure 10. The
topology is a subset of the full system comprised of one each of an alignment supervisor
workstation (Align_Supl), automatic alignment FEP (AA_Sysl), video FEP (VFEP1),
and alignment control FEP (AC_FEP1). The heavy traffic load that was applied in the
simulation is given in Table 2. These traffic levels were obtained from estimates made by
design engineers. The load of 5 requests/sec from an automatic alignment system to a
video FEP represents a heavy load. The load of 108 requests/sec to the AC_FEP greatly
exceeds what any AC_FEP can expect but is more indicative of a load on the alignment
supervisor and automatic alignment systems, which communicate with 108 alignment
control FEPs.

Figure 10. Top-level of hierarchical OPNET network model of NIF’s alignment
control system.
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Client Ser ver Requests[3 ] Req. size Resp. size Ser ver

Nodes Nodes Network P rotocol /|sec dist. Bytes dist. Bytes[4 ] dist. time, mse c
Align_Sup| VFEP[1] ATM AAL5 10  Qonst. 1 (onst. | 307,200 Const. 20.48
VFEP[1] ATM AALS 10 Gonst. 1 Gonst. | 307,200 Const. 20.48
VFEP[1] ATM AALS 10  Qonst. 1 (onst. | 307,200 Const. 20.48
AC_FEP [2]| Ethernet| TCP/IP | 108 Normal| 200 Qonst. 64 Const. 0.0625
AA_Sys | VFEP[2] ATM TCP /IP 5 Normal | 200 Qonst.| 307,200 Const. 20.00
AC_FEP[2]| Ethernet| TCP/IP | 108 Normal| 200 Qonst. 64 Const. 0.0625

[1] An Align_Sup requests 3 video st reams f rom one VFEP ( wor st case)
[2] Clients random|y select aser ver

[3] Requests made per each Client node ( i.e. Align_Sup or AA_Sys)

[4] 307,200 Bytes =singl ecamer a image (640 x 480 x 1 Byte)

Table 2. Load traffic used in the alignment network simulation.

The “dist.” columns represent the distributions used for the traffic. “Const.” means a
constant distribution is applied (i.e. all are the same). “Normal” means that a normal
distribution is applied providing a level of randomness to the traffic.

The three video streams between the video FEP and the alignment supervisor are flowing
simultaneously and each one is allocated 30 Mbit/s of the 155 Mbit/s ATM bandwidth.
Therefore the video streams are spread out in time rather than being burst at the
maximum ATM rate. This allows the video FEP to respond without potentially large
delays to image requests from the automatic alignment system. Figure 11 shows the
service time distribution for video FEP frame requests (i.e., for single images) over a 15-
second simulation run. The video FEP service times vary from the minimum of 20.48 ms
to a maximum of about 45 ms, which occurs when image frame requests from the
automatic alignment system overlap with streaming video requests.

72.5

time

Figure 11. Video FEP single-frame service times over a 15-second interval.

Figure 12 shows the response times for streaming video frames from the video FEP to the
alignment control supervisor. The graph shows that the minimum response time is about
111 ms and the maximum is about 135 ms. This latency is the sum of the service time
and the transmission time of the image data (about 2.46 Mbits), which at 30 Mbit/s takes
about 90 ms. This ~100 ms latency is not overly significant since video is only being
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viewed by a person at the supervisory console. The most critical factor is that the jitter
variation between images does not lag control enough to become tedious for the operator.

NIF net. &lign Supl. client®. Ftp Res

time

Figure 12. Video FEP streaming video service times.

Figure 13 shows the response time of image frames transferred from the video FEP to the
automatic alignment system. In this simulation, since 90 Mbit/s is allocated to the 3
video streams going to the alignment supervisor workstation, the rest of the ATM
bandwidth (65 Mbit/s) is available for image transfers to the automatic alignment system.
The simulation predicts a response time between about 60 and 75 ms. A minimum of
20.48 ms is the video FEP service time and a minimum of about 40 ms is for the image
transmission time, including TCP/IP protocol processing. The automatic alignment
system will be receiving images from multiple video FEPs, so the overlapped processing
of other images mitigates this latency. Note that if streaming video were turned off so
that all ATM bandwidth is available to the automatic alignment system, then these
response times could be reduced to less than 40 ms (of which 20 ms is for video FEP

service time).

NIF_net. Ad Sy . m Application

0. o75

0. 0725

Figure 13. Video image transfer times to the automatic alignment system.

Overall simulation results indicate that the network will be capable of meeting the
throughput and latency requirements of the NIF laser alignment process, which presents
the highest traffic to network switches. Expected traffic involves the simultaneous
transfer of motion video to operator stations at 75 Mbit/s and sensor image transfers at 60
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Mbit/s, as well as control messages—all between 100 computers comprised of image
processors, supervisory workstations, video digitizers, and motion control systems. The
overall requirement is to provide a steady stream of video images to operators while
automatic closed-loop processing choreographs the precise adjustment of over 9,000
motorized optics within a 20-minute period.

Control system operational workflow simulations

Several process models of typical control system operation were developed for
determining optimal performance configurations of hardware and software in the ICCS
architecture. Software tasks, computer hardware, operator interactions, and the
collaboration between the functional elements were modeled using a commercial tool,
Simprocess. These models help pull together results from the efforts described above.
Some performance data were obtained from the network and CORBA simulations as well
as testbed measurements.

Since the ICCS framework design is object-oriented, software classes from the
development effort are useful for defining simulation models. Of particular interest was
the performance of the ICCS under scenarios for computer system start-up [5], status
monitoring [6], shot setup messages [7], and distributed processes such as automatic
alignment [8].

Restarting all computers in a large system from a power-down condition is a serious
concern. For NIF, it is specified to take less than 30 minutes. ICCS will run under both
the Solaris and VxWorks operating systems. In most cases the operating system will be
downloaded to a computer, rather than reside on local disks. The computer start-up
process is shown as a Simprocess model diagram in Figure 14.

Boot VW orks FEPs & Load Apps
Boot Solaris FEPs & Consoles

_t;/_E Start FEP Controllers & Dewices

Boot File Servers & NT

—

Complete

Start Supervisory Apps

(8.6

Start up >

Start Shot Director
Start Bys. Mgy & Config

74 hé

- -
V\/V

Time stamp feedformrard

Reboot Time: 2868

Figure 14. Simprocess discrete-event model for starting all processors in the NIF
example configuration.

The simulation passes control system events (e.g., requesting CORBA addresses) through
a sequence of activities (e.g. retrieve the operating system from disk, download the
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application, etc.). Each activity has among its other attributes, a delay. This delay defines
how long it takes each subprocess to finish the activity. The sum of these delays from
beginning to end is the total time required to complete the process modeled by the
simulation. Delays can be constants or random numbers chosen from a statistical
distribution. Each rectangular box in the figure represents a set of activities through
which the start-up event must pass. The connecting lines indicate process dependencies.
Resources (e.g., network capacity and file server capacity) are also modeled in order to
determine resource-constrained bottlenecks in the process.

Each time is given in minutes and is the total elapsed time when the subprocess
represented by the box completed. The total time to start-up the NIF system is 28.7
minutes for this replication. A series of 100 replications yielded a maximum of 30.0
minutes, minimum of 28.5 minutes, an average of 29.0 minutes, and a standard deviation
of 0.5 minutes

As a consequence of poor performance revealed by initial simulations, the architecture
had to be adjusted so that all available Solaris workstations would participate as boot
servers for the VxWorks FEPs. This was a trade-off in that there is a system
administration cost for maintaining many mirrored locations of the boot information.
Nevertheless, there are 455 VxWorks FEPs and the simulation showed savings of 25.3
minutes in the system start-up time over maintaining the information in a single server.

The simulation also showed that having each Solaris computer with its own copy of the
operating system saves another 7.4 minutes in the system start-up time. This would
require an increase in the system administration effort to maintain over 60 copies of the
Solaris operating system. If needed, this change would further reduce the start-up time.

A countdown simulation was constructed on the NIF example architecture to assess FEP
resource utilization during the 5-minute time frame preceding a target shot. CORBA
messages were modeled between control subsystems including the plasma electrode
Pockels cell, laser wavefront correction, and power conditioning. Message format, rate
and size were obtained from design engineers as inputs to the simulation. Front-end
processor and 10 Mbit/s Ethernet latencies were experimentally evaluated and formulas
were created to predict communication delays to within £10% accuracy. The simulation
predicts that the control system will be relatively lightly loaded for communication tasks,
running from less than 10% resource utilization to about 30% for the wavefront
correction system, which must continuously transmit video sensor images between
collaborating processors. The remaining resource is of course needed for processing data.
Engineers found this type of simulation very useful for visualizing system operation very
early in the design cycle.

Another detailed simulation was prepared of NIF’s automatic alignment system that
modeled the interactions between motor controllers, video digitizers, and image
processing computers. This study was particularly interesting and important because of
the system size — some 9,000 motorized actuators and 500 video sensors — and the
dramatic impact closed-loop alignment has on facility throughput. Simulation results
revealed a major defect in the mechanical design of the beam transport system, which
was subsequently corrected. The simulation guided design optimization that should lead
to acceptable performance, as shown in Figures 15 and 16.
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Figure 15. Control system activity during 20-minute NIF alignment is dominated by
mechanical actuation times.
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Figure 16. Processor time utilization shows CPU resources do not limit operations.

Note that in this scenario network traffic uses only a small percentage of processor
resources even though 48,000 CORBA transactions are required in a 20-minute interval.
Two milliseconds of processor time per transaction is easy to achieve. With four
processors assigned to automatic alignment in NIF, only 2% of each computational
resource is needed for CORBA. The dominant processor utilization is image processing,
while the dominant clock time impact is waiting for mechanical actuators to complete
their assigned movements. The parallel nature of aligning NIF’s 192 laser beams allows
multiple processors to divide up the work such that other beams can be processed
whenever another is waiting on mechanical hardware.

Suggestions for Continuing Work

The simulation work summarized in this report focused on control system design and

architectural issues. Additions and enhancements to control systems have traditionally
been expensive and time consuming. However if experience with prototypes and operator
feedback is obtained early, the object-oriented nature of the ICCS design should allow
modifications to be incorporated at reduced cost during the iterative implementation that

leads up to full deployment. More realistic and thorough simulations driven by actual

18 UCRL-ID-133243



operator controls are needed to continue providing pre-deployment experience. As
control systems are installed, testing and operator training becomes a complex
undertaking that can be assisted by simulation techniques.

Two basic techniques for operating controls without hardware are emulation and
simulation. Emulation supports testing by faking interactions with the facility equipment
at the control point level. In this context, simulation supports operator training by
incorporating special software written to predict a more realistic integrated response of
the equipment, such as determining sensor readouts under various operating conditions.

Figure 17 illustrates a 3-year timeline starting with this LDRD and leading toward the
first deployment of ICCS in NIF.
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Figure 17 Roadmap to future ICCS simulation development within the NIF project

Future work should determine how an abstract emulation capability fits within the ICCS
architecture. Emulation could then be used to test the software at increased “simulated”
scale and provide validation data for refining existing discrete-event models. A technique
for integrating equipment simulation models into the ICCS architecture using CORBA
should also be developed. In addition, an assessment of the integration and operational
characteristics of graphical user interface displays applied to training simulators is
warranted. The design of the control room, optimal use of computer displays, and
interactions with operators should be included in the assessment.

Several topics that enhance ICCS simulation merit further work:
*  Where to implement emulation in the distributed object architecture.

* How to configure emulation during start-up of the control system while
maintaining confidence that “real” configurations use “real” hardware.

* Methods to reconfigure emulation and simulation on individual devices
(or device groups) while the system is running.

» Algorithms and logic to simulate off-normal signals and conditions.

* Continued refinement and validation of models and parameters.
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Summary

Building distributed object-oriented control systems, particularly those as large and fully
featured as required for NIF, is state of the art. The three coordinated simulation activities
comprising this LDRD successfully guided the design of the ICCS as it will be deployed
for NIF. Actual performance data collected from the ICCS computer and network testbed
verified many simulation parameters.

CORBA testing provided both functional and performance evaluations of products under
development to the vendor, thus helping to ensure availability of an off-the-shelf
distribution mechanism for the ICCS architecture. Key portions of the NIF network were
analyzed by simulating network operation and assessing its performance under worst-
case conditions. Workflow models supported redesign of the operational aspect of
restarting the ICCS system within the time required, and were used to study a model of
controlled equipment for the automatic alignment system. Simulation estimates revealed
initially unsatisfactory system performance that led to improvements in the software
deployment and modifications to the optical-mechanical hardware.

Additional simulation results also showed that some kinds of trigger signals could be
reliably broadcast over the large network, obviating the need for separate trigger
distribution hardware. For example, using the NIF network in this capability will save
approximately $250K over conventional methods.

The ICCS framework is designed for reuse in future control systems, so the strategies
developed under this LDRD can also assist those developers in determining optimal
distribution of software among planned computer resources.
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